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Quantum Mechanics

Quantum Mechanics - Schrodinger’s equation (Time dependent and
time independent equations), Physical significance of wave function

, Operators, Expectation values of a dynamical quantities, Ehrenfest’s
theorem, Eigen value and Eigen functions, Particle in a box, Application
to free particle in a one and three dimension.

.

SYLLABUS

SCHRODINGER’S EQUATION

Q. 1. Derive Schrodinger’s time dependent equation for matter
waves.

Ans: Schrodinger’s time dependent wave equation:
A plane wave moving in the positive-x direction is represented
in the exponential form as

 i t kxy A.e   ..........(1)

Where, 2    (   is frequency of the wave)

                          k 2 /    (  is wavelength of the wave)

Let E be the total energy and p be the momentum of the particle.
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Therefore equation (1) becomes
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In quantum mechanics the wave function   denotes the
amplitude of matter wave corresponds to the wave variable y of
plane wave. For this reason we assume that the wave function ø
for a particle moving freely in the +ve X- direction is specified
by

 i E.t p.x
A.e

 
   ..........(3)

Equation (3) represents matter wave for a free particle of total
energy E and momentum p.
Differentiating equation (3) twice with respect to x, we get

   i E.t pxi iA p . e .p
x

               


 

2 2 2 2

2 2 2
ip i p p

x x xx
                    

Therefore 
2

2 2
2p

x
 

  


 ..........(4)

Differentiating equation (3) with respect to t, we get

 i E.t pxi iA E. e .E
t

              


 

Therefore E i t


  



..........(5)

For a particle of mass m, moving with a velocity v piloted by the
wave function ø, the total energy in a non-relativistic case is
given by

E = K.E. + P.E.

  21 m V
2

  

2pE V
2m

 

Multiplying both the sides by ,  we get

2pE V
2m

 
     

 
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i.e.
2p V E

2m
 

     
 

..........(6)

Substituting the values of  2p    from (4) and E from (5), we
have

2 2

2 V i
2m tx

   
      

  ..........(7)

This is Schrodinger’s one dimensional time dependent equation
for matter waves.
In three dimensions, ø is a function of x, y, z & t.  Therefore, for
three dimensions it converts to following equation.

2 2 2 2

2 2 2 V i
2m tx y z

       
          

 

or
2

2 V i
2m t


     


  ..........(8)

 This is Schrodinger’s three dimensional time dependent equation
for matter waves.
Note: For free particle potential energy, V = 0.

Q. 2. Derive Schrodinger’s time independent equation.

or
Obtain Schrodinger’s time independent equation for a non-
relativistic free particle.

Ans: Schrodinger’s time independent wave equation:
When the potential energy V of a particle does not depends
explicitly on time and P.E. vary with the position of the particle
only. In such situations, the wave function (x,t)  can be written

as the product of two separate functions (x)  a function only of
x and f(t) a function only of t.

(x,t) (x).f(t)   

Hence the one dimensional wave function ø of an unrestricted
particle may be written in the form –

 i E.t p.x
A.e

 
  

   
i ip.x E.t

A.e .e


  
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i E.t

0.e


     ..........(1)

Here, 
i p.x

0 A.e   . That is, ø is the product of position dependent

function 0  and a time dependent function 0  and a time

dependent function 
i. .E.t

.e

 ,

Differentiating equation (1) twice with respect to x, we get

i22 . .E.t
0

2 2 .e
x x

  


 
 ..........(2)

Differentiating equation (2) with respect to t, we get

i. .E.t

0
i. E. .e

t


  





..........(3)

, Schrodinger’s one dimensional time dependent equation is

2 2

2 V i
2m tx

   
      

  ..........(4)

put 
2

2x
  
  

 from equation (2) and 
t




 from equation (3), we get

i i i22 . E.t . E.t . E.t0
0 02

i.e V .e i . E. .e
2m x

      
              

   


Dividing both the sides by common exponential factor, we get

22
0

0 02 V E
2m x

  
      



 
22

0
02 E V 0

2m x
  

      



or  
2

0
02 2

2m E V 0
x

  
      

Further, 0 is a function of x only, hence usually it is written in
the form
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 
2

2 2
2m E V 0

x
  

      
..........(5)

Equation (5) is the time independent (steady-state) Schrodinger’s
equation in one dimension.
Three dimensional time independent equation-
For motion of particle in three dimensions, ø is a function of
x,y,z. In such a case the time independent form of Schrodinger’s
equation is given by

 
2 2 2

2 2 2 2
2m E V 0

x y z
      

            or

 2
2

2m E V 0     
 ..........(6)

Equation (6) is the time independent (steady-state) Schrodinger’s
equation in three dimensions.

Q. 3. Why the Schrodinger’s equations do not valid for relativistic
particles?

Ans: Schrodinger’s equations are not valid for relativistic particles
because in deriving these equations we use classical (non-
relativistic) expression for total energy E = (p2/2m) + V. We also
take the momentum of the particle as non-relativistic and equal
to mv. The K.E. is taken as ½.mv2, which is also a non-relativistic
expression.

PHYSICAL SIGNIFICANCE OF 

Q. 4. What is wave function ?  Give the physical significance of

wave function   and  2 .

Ans: Wave function  : The wave function ø is a function of space
variable (x, y, z) and time t and it can give nearly complete
information about the state of a physical system at a particular
time in accordance with the rules of quantum mechanics.

Physical significance of wave function   and  2  :
The wave function ø has no physical existence because it can
be complex. Also it cannot be taken as the probability at (r, t)
because the probability is real and nonnegative. However the
value of wave function   associated with a moving particle at a
particular point x, y, z in space at the time t is related to the
likelihood of finding the particle there at that time.
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The product of wave function ø and its complex conjugate   is
interpreted as the position probability density P(r,t).

  2P r,t (r,t). (r, t) (r,t)     ..........(1)

According to this view 2     represents probability density

of the particle in the state .

The probability of finding the particle in a volume element
dV = dx.dy.dz surrounding the point r(x, y, z) at time t is expressed
as

  2P r,t .dV (r,t). (r,t).dV (r,t) .dV    

It is large in magnitude where the particle is likely to be located

and small elsewhere. When 2(r, t) dV  is integrated over the entire
space one should get the total probability, which is unity.
Therefore,

Total probability 2(r, t) dV 1




     (i.e. 100% presence) ..........(2)

Any wave function satisfying the above equation is said to be
normalized.
Note: The process of integration over all possible locations to give
unity is called normalization.

Q. 5. What are the conditions for the wave function to be well
behaved?

Ans: The wave function ø must satisfy the following conditions.
i)   must be finite for all values of x, y, z.

ii)   must be single valued i.e. for each set of values of x, y and
z,   must have one value only.

iii)   must be continuous in all regions except in those regions
where the P.E.V(x, y, z) = 

iv) The partial derivatives of ,  i.e. , ,
x y z

  
    must also be

continuous. The wave function   satisfying all the above
conditions is called well behaved wave function.
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Q. 6. What is normalization of a wave function? Prove that
normalization is independent of time.

Ans: Normalisation : If we consider a small element of volume dv
defined by the coordinates (x, x + dx); (y, y + dy); and (z, z + dz)
then, the probability of finding the particle existing within this
element of volume dv is given by

* *P(dv) .dv .dx.dy.dz     

The probability of finding the particle in a finite volume v is
given by

*

v

P(dv) .dx.dy.dz  

The particle must always be somewhere in space so that
extending the integral over all space, the probability becomes a
certainty i.e. it equals unity.

*

All  spae

P(dv) .dx.dy.dz 1    

The process of integration over all possible locations to give unity
is called rmalization.

As   and   are functions of x only and are independent of
time, the probability of locating a system in the region   to
  continues to be one for all times i.e. normalization is
preserved in time or is independent of time.

Q. 7. Normalise the one dimensional wave function given by
     

 
xn(x) A sin .x 0 x L
L

  0,  outside

Ans: The wave function is said to be normalized if it satisfies the
condition

* .dx 1




  
The given wave function   exists in the region 0 < x < L

L
2 2 x

0

nA sin .x.dx 1
L
   

 

But  2cos2 1 2sin .     Therefore 2sin (1 cos2 )/2   
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L
2 2x

0

1 cos2n x /L L 2A .x.dx 1 A 1.gives.A
2 2 L

       
 

Hence, the normalized wave functions of the particle are given
by

x
n

n2 sin .x
L L

    
 

 ......(Ans)

OPERATORS

Q. 8. What are the postulates of quantum mechanics?
Ans: The mathematical formulation of quantum mechanics is based

on linear operators.
Postulates of quantum mechanics:
i) There is a state vector (or wave function) associated with every

physical state of the system which contains the entire
description. i.e. the information of a system is contained in
the wave function ø of the system.

ii) For every physical observable (dynamical variable) there is
corresponding linear Hermitian operator.
The most important operators of wave mechanics are

Variable Symbol Quantum mechanical operator 

Position x, y, z Multiplication by x / y / z resp. 

Linear 
momentum 

Px, Py, Pz 

xi
Px 


 .ˆ 

; 
yi

Py 


 .ˆ 
;  

zi
Pz 


 .ˆ 

 

Potential 
energy 

V Multiplication by V 

Energy E 

t
iE




 .ˆ   

Hamiltonian H 
V

m
H  2

2

2
ˆ 

 

iii) The only possible values that can be obtained from the
measurement of the observable of a system (whose operator is

Â ) are the eigen values An of the equation. Thus

n n nÂ A .  
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iv) The expectation value of a variable x of a system in the state ø

is given by 
x̂ .dr

x
.dr





 
 

 





 ..........(1)

These are the postulates of the quantum mechanics.

Q. 9. Explain the observable and operator.
Ans: Observable: A quantity obtained by the process of observation or

measurement on a physical system is called an observable. An
observable is the result of actual measurement.
Operator: An operator is a mathematical rule or prescription.
Mathematical operations in algebra and calculus like addition,
subtraction, multiplication, division, finding square root,
differentiation or integration are represented by characteristic

symbols like 
d, , , , , , .and. f.dx

x dt


   
   can be considered as

operators.

Ex.: If A is an operator represented as Â  and stands for the

operation ,
x



then

 4 4 3Âx x 4x
x


 


Q. 10. What is a linear operator? Show that the following operators
are linear.

1) xp px
2

2) 2 2(p x xp ) 3) 
d
dx

Ans: Linear Operator: An operator P̂ is said to be linear if it satisfies
the following conditions

ˆ ˆ ˆP(u v) Pu Pv    and

ˆ ˆP( .u) .Pu  

where u and v are arbitrary functions and   is an arbitrary
constant.

1)
xp px 1(u v) x . .(u v) x.(u v)

2 2 i x i x
          

 

1 u v xu xvx . x .
2 i x i x i x i x

            
   
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which follows the conditions ˆ ˆ ˆP(u v) Pu Pv    and

ˆ ˆP( .u) .Pu   . Hence operator 
xp px

2


 is linear.

ii)
2 2

2 2 2 2
2 2(p x xp )(u v) [x.(u v)] x [(u v)]

x x
 

      
 

 

    
2 2 2 2

2 2 2 2
2 2 2 2

xu xv u vx x
x x x x

   
    

   
   

which follows the conditions ˆ ˆ ˆP(u v) Pu Pv    and

ˆ ˆP( .u) .Pu   . Hence operator ) p2x –  xp)2 is linear.

iii) x̂(u v) xu xv   which follows the conditions P̂(u v) 

ˆ ˆPu Pv and ˆ ˆP( .u) .Pu.    Hence operator x is linear.

iv)
d d d(u v) u v
dx dx dx

    which follows the conditions

ˆ ˆ ˆP(u v) Pu Pv    and ˆ ˆP( .u) .Pu.    Hence operator 
d
dx is

linear.

Q. 11. What is a Hermitian operator? Give its properties.

Ans: Hermitian Operator : An operator P̂ associated with dynamical
variable is said to be Hermitian if its average value in any state 
is real.
Thus for u and v are two acceptable normalized wave functions,
defined over a certain range of configuration space V, then
operator P̂ associated with a dynamical variable is Hermitian
(self-adjoint or real)  if

* * *ˆ ˆu Pv dV P u v dV
 

 

 

Properties of Hermitian operator:
1) Hermitian operators have real eigen values.
2) Two eigen functions of Hermitian operators belonging to

different eigen values are orthogonal.
3) If two Hermitian operators commute then their product is also

Hermitian operator.
Note: Every Schrodinger operator associated with areal dynamical

variable is Hermitian.
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Q. 12. Show that momentum operator 


xP̂ .
i x
  is Hermitian

operator.

Ans: Momentum Operator xP̂ .
i x







Complex conjugate of P̂  is *P̂
i x


 




If p is Hermitian operator its expectation value <p> in any state
  must be real i.e.

*p̂ dx must be real
i x






 




..........(1)

Integrating (1) by parts, we get

*
*p̂ .dx

i i x







       
 

*
*ˆdx p

i x





     


..........(2)

It is obvious from (1) and (2) that p̂  is equal to its complex

conjugate. In other words p̂   is real. Hence the momentum

operator xP̂ .
i x







 is Hermitian.

EXPECTATION VALUES

Q. 13. Discuss expectation values of dynamical variables.
Ans: Expectation value : The expectation value represents the

arithmetic mean over a large number of a simultaneous
measurements in identical state ( ) .

The expectation value of a variable x of a system in the state   is
given by

x̂ .d
x

.d





  
 

  

 ..........(1)

<x> is called expectation value.
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If the wave function ø is normalized, then * d 1.     Hence,

The expectation value of a dynamical variable x for normalized
wave function is given by

*x x .d     .........(2)

Ex.: 1) Expectation value of position coordinate x-

*x x .dx   
2) Expectation value of component of momentum px

along x-

*
xp .dx

i x
      



3) Expectation value of momentum -

*p .dx
i

      
 


4) Expectation value of Energy-

*E i .d
t
        

EHRENFEST’S THEOREM

Q. 14. State and prove Ehrenfest’s theorem.***
Ans: Ehrenfest’s theorem : It states that the average motion of a wave

packet agrees with the motion of the corresponding classical
particle.
Hence, the classical laws (Newton’s laws) may be expressed as

drm. p
dt

 .........(1)

and
dp grad V
dt

  ..........(2)

or In terms of components,

x
dxm. p
dt

 y
dym. p
dt

 Z
dzm. p
dt

   ..........(A)

and Xdp V ;
dt x


 


ydp V ;

dt y


 


zdp V
dt z


 


 ..........(B)
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Where, p = linear momentum of a particle and V, the P.E. of
particle of mass m.
Proof:
In quantum theory it is not possible to define the derivative of
x,  y,  z, px, py and pz in the classical sense. The approximate
values of derivatives found by considering the time rate of
change of average values of x, y, z, px, py and pz.
A) Thus x component of velocity may be defined as the time

rate of change of expectation value of x i.e.

*d dx x .d
dt dt

    

 * *x .d .x. .d
t t

 
     

   ..........(3)

Time dependent Schrodinger’s equation is

2
2i V

t 2m


     


 ..........(4)

Complex conjugate time dependent Schrodinger’s equation
is

2
2*i * V *

t 2m


      


 ..........(5)

Substituting values of t



 and 
*

t



from (4) and (5) in

equation (3), we get

2
* 2

2
2

d 1x x. V d
dt i 2m

1 * V * .x. .d
i 2m

              
   

            
   











* 2 2[ x.( ) ( *).x. ].d
2im

         


* 2 2d x x( ).d ( *).x. .d
dt 2im 2im

            
 

..........(6)
In the above equation the second integral can be integrated
by parts, i.e.
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2
V A V( *).x. .d (x. .grad ).dA * grad(x ).d            

 A n V(x. .grad *) .dA grad * (x ).d         ..........(7)

Here the integral of the normal component of *(x .grad ) 
over the infinite bounding surface A is zero because the
wave-packet vanishes at great distances.
So equation (7) becomes

2

V V

( *).x .d grad. * (x )d           

Integrating above equation by parts in which the surface
integral again vanishes, we get

2 2( *).x .d * (x )d         
Using equation (9), equation (6) can be written as

* 2 2d x x( ).d * (x ).d
dt 2im 2im

            
 

 2 2* [x( ). (x )].d
2im

        


   * .d
im x


   




2 2x (x ) 2
x


      




1 * i .d
m x

       

i.e. x
d 1x p
dt m

    

Similarly, y
d 1y p
dt m

   and z
d 1z p
dt m

   

Combining all components,

d 1r p
dt m

    ..........(8)

B) The time rate of change of change of x component of
momentum is given by

x
d dp * i .d
dt dt x

         

    
*i * .d . ..d

x t t x
                ..........(9)
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** i d i .d

x t t x
                       

Using Schrodinger time dependent equation and its
complex congugate

2 2
2 2* V d * V .d

x 2m 2m x
    

                      
 

 

..........(10)

 * V V .d
x x
          

i.e. x
d V Vp * .d
dt x x

 
        

 

Similarly, y
d Vp
dt y


    

  and

z
d Vp
dt z


    



Combining all components,

d p V
dt

   

Equation (8) and (11)are analogous to the classical equations
of motion:

drm. p
dt

  and 
dp grad V
dt

 

This proves Ehernfest’s theorem.

EIGEN VALUE AND EIGEN FUNCTIONS

Q. 15. What is an eigen function and eigen value?
Ans: Eigen function: A function f is called an eigen function of the

operator Â  if when the operator Â  operates on the function f,
we get the same function multiplied by a constant C i.e.

Âf Cf ..........(1)

The constant C is called the eigen value of the operator Â.
Equation (1) is known as eigen value equation .
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Note: Eigen value means proper or characteristic value and Eigen
function means proper or characteristic function.

Q. 16. The operator for Z-component of angular momentum is

ZL̂ i ,
 


 determine whether or not sin(mö) is its eigen

function.
Ans: Eigen value equation is

Âf Cf  ..........(1)

Here f sin(m )   and operator ZL̂ i 
 




Z
ˆ ˆAf L sin(m ) i sin(m ) i .m.cos(m )

        

 

As ZL̂ sin(m ) a cons tant sin(m )   

Hence, sin sin (m )  is not an eigen function of angular

momentum ZL̂ i 
 




PARTICLE IN A BOX

Q. 17. What is a free particle? Write its potential.
Ans: A free particle is one for which no force of any kind is acting

upon it and hence it has constant P.E. which can be assumed to
be zero. Thus the total energy of a free particle is all the kinetic.
It is free from any force, hence its potential = zero.

APPLICATION TO FREE PARTICLE IN A ONE DIMENSION

Q. 18. Solve the Schrodinger wave equation for a free particle in a
one dimensional rigid potential box to obtain energy eigen
values and eigen functions.

Ans: Suppose a particle is restricted to move freely inside a box in
one dimension between two points at x = 0 & x = L i.e.
0<= x <= L.  The walls of the box are rigid, hard and elastic.
A particle confined to a box of widh L.
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Fig. 1.1

The potential energy V of the particle is infinite on both the
sides of the box while V inside the box is constant and assumed
to be zero as shown in figure below.

Fig. 1.2

Boundary conditions:

V 0 for 0 x L    and

V for x 0 and x L   

Schrodinger’s one dimensional time independent equation
gives

 
2

2 2
d 2m E V 0
dx

 
    

   ..........(1)

For a free particle inside the box, V = 0. Hence within the box,
Schrodinger’s equation becomes

2

2 2
d 2m E 0
dx

 
   

   ..........(2)

Putting, 
2

x2
2m E k
  the equation (2) becomes

2
2

x2
d k 0
dx

 
   

 

The general solution of this differential equation can be written
as
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x xAsinK .x Bcos K .x   ..........(3)

where A and B are arbitrary constants. To find the values of A
and B we apply the boundary conditions. For continuity of the
wave function at the boundary, we have

0when x 0 & x L,both   

Using boundary condition

0whenx 0   , we get from equation (3)

                                     B = 0
Therefore equation (3) now becomes

xAsinK .x  ..........(4)

Using boundary condition 0 when x L,   we get from
equation (4)

    x0 AsinK .L

x xk .L n where n 1,2,3,.....   

x
x

nk
L


  ..........(5)

2 2
2 x

x 2
nk

L


 

But, 2
x2

2m E k


Equating both the equations, 
2 2

x
2 2

n2mE
L





2 2
2

n x2E .n
2mL

 
   

 


where nx = 1,2,3,……. ..........(6)

For each value of nx, there is corresponding energy value. Thus
the particle inside the box can have the discrete energy values
given by equation (6). Also note that the particle cannot have
zero energy.
The particle in a box: Wave functions-

Put x
x

nk
L


  From equation (5) to equation (4), we get the wave

functions
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x
x

nAsinK .x Asin .x
L
     

 

The particle is somewhere inside the box. Hence for a normalized
wave function

L

0

* .dx 1  

L
2 2 x

0

nA sin .x.dx 1
L
   

 

But, 
L

2 2x

0

1 cos2n x /L L 2A .x.dx 1 A 1.gives.A
2 2 L

       
 

Hence, the normalized wave functions of the particle are given
by-

x
n

n2 sin .x
L L

    
 

..........(7)

and are plotted in the figure below.

Fig. 2.3

We know, Probability density 2
n n n nP *    

  
2 xn2 sin .x

L L
   

 
..........(8)

and are plotted in the figure below
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Fig. 2.4

It is clear that the probability of locating the particle at x = 0 and
x = L i.e. near the walls is always zero.

Note: A node is the position of minimum displacement and an anti-
node is the position of maximum displacement.

APPLICATION TO FREE PARTICLE IN A THREE DIMENSION

Q. 19. Solve the Schrodinger wave equation for a free particle in a
rectangular potential box. Obtain energy eigen values and
eigen functions.

or
Write Schrodinger’s equation for a particle in a rectangular
rigid box and solve it. Find the eigen values of momentum
and energy.

Ans. Suppose a particle is restricted to move freely inside a
rectangular box of sides Lx, Ly and Lz. The walls of the box are
rigid, hard and elastic.
The potential energy V of the particle is infinite outside the box
while V inside the box is constant and assumed to be zero as
shown in figure below.

Fig. 2.5
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Boundary conditions:
V = 0  inside the box and

V    outside the box
Schrodinger’s three dimensional time independent equation
gives

 2
2

2m E V 0     
 ..........(1)

For a free particle inside the box, V = 0. Hence within the box,
Schrodinger’s equation becomes

2
2

2m E 0    


2 2 2

2 2 2 2
2m E 0

x y z
      

     
     ..........(2)

Now,   is a function of x, y, z co-ordinates. We can therefore
put

x ' y z(x, y,z)      ..........(3)

Using equation (3) in equation (2), we get

         
2 2 2

x y z x y z x y z x y z2 2 2 2
2m. . . . . . E . . 0

x y z
   

                
    

        
22 2

yx z
y z x z x y x y z2 2 2 2

2m. . . . . . E . . 0
x y z

     
                  

Dividing this equation by x y z  

22 2
yx z

2 2 2 2
x y z

1 1 1 2m. . . E 0
x y z

     
           

22 2
yx z

2 2 2 2
x y z

1 1 1 2mE
x y z

    
    

      ..........(4)

Put 
22 2

y2 2 2x z
x y z2 2 2

x y z

1 1 1k ; k ; k
x y z

    
  

     ..........(5)

equation (4) becomes

2 2 2
x y z 2

2mEk k k  

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Now the equations (5) can be rewritten as
2

2x
x x2 k 0

x
  

   
 

 ..........(x)

2
y 2

y y2 k 0
y

  
     

 ..........(y)

2
2z

z z2 k 0
z

  
   

 
 ..........(z)

The general solution of these differential equations is of the
form

x x xAsinK .x BcosK .x   ..........(6)

where A and B are arbitrary constants. To find the values of A
and B we apply the boundary conditions. For continuity of the
wave function at the boundary, we have

x x0 when x 0 & x L ,both   

Using boundary condition

x 0 when x 0   , we get from equation (6)

     B = 0
Therefore equation (6) now becomes

x xAsinK .x  ..........(7)

Using boundary condition x x0 when x L   we get from
equation (7)

0 = A sin Kx.Lx

x x xk .L n wheren 1,2,3,.....   

x
x

x

n
k

L


  ..........(8)

Therefore equation (7) becomes

x
x x

x

nA sin .x
L

 
   

 
Similarly

y
y y

y

n
A sin .y

L
 

    
 

 when y
y

y

n
k

L


  and
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z
z z

z

nA sin .z
L

 
   

 
 when z

z
z

n
k

L




Hence the complete solution can be written as

x y z(x, y,z)      

yx z
x y z

x y z

nn nA A A sin .x sin .y sin z
L L L

     
               

..........(9)

The particle is somewhere inside the box. Hence for a normalized
wave function

yx zLL L

0 0 0

* .dV 1    

xL
2 2 x

x
x0

nA sin .x.dx 1
L

 
  

 


But 
L

2 2x x
x x x

x0

1 cos2n x /L L 2A .x.dx 1 A 1.gives.A
2 2 L

       
 

Similarly y
y

2A
L

  and z
2A
Lz



Hence, the complete wave function for various values of
quantum numbers nx, ny and nz has the form,

yx z

x y z x y z

nn n8 sin .x sin .y sin z
L .L L L L L

     
              
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Fig. 2.6

Figure represents first three normalized wave functions and
probability density for a particle in a box.
Eigen Values of the Energy:

We know, 2 2 2
x y z 2

2mEk k k  


 and x
x

x

n
k

L


  
y

y
y

n
k

L




z
z

z

n
k

L




22 22
yx z

2 2 2 2
x y z

nn n2mE
L L L

 
     

 

x y z

22 22 2
yx z

n ,n ,n 2 2 2
x y z

nn nE
2m L L L

 
     

 


..........(11)

For cubical box, the ground state energy value is obtained by
putting nx = ny = nz = 1

2 2

1,1,1 2
3 .E
2mL




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There is only one set of quantum numbers that gives this energy
state, and this level is said to be non-degenerate.

2

211 121 112 2
3E E E
ma


  


Fig. 2.7

Figure shows energy levels, degree of degeneracy and quantum
numbers of a particle in a cubical box.

SOLVED PROBLEMS

Ex. 1.  Calculate the expectation value of p and p2 for the normalized

wave function 
1

22 .x(x) sin
L L

     
in the region 0 < x < L  and

(x) 0   for x > L

Solution: A) The expectation value of a dynamical variable p for
normalized wave function ø is given by

* ˆp p .dx    ..........(1)

The operator associated with x component of momentum

is p̂
i x







p * .dx
i x


   



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Here 
1
22 .x(x) sin

L L
    

 

in the region 0 < x < L

1 1L 2 2

O

2 x 2P sin . .dx
L L i x L

                  




L

0

2 x xsin .cos .dx
L i L L L

  
 



L

2
0

2 xsin .dx
i LL
 

 


L

2

0

xcos 2
L

2i L L

 
 

    
 



 cos2 cos0 0
2iL

    


    p 0  

B) The expectation value of a dynamical variable p2 for normalized
wave function ø is given by

 2 * 2ˆp p .dx    ..........(1)

The operator associated with x component of momentum is
2

2 2
2p̂

x







  
2

2 2
2p * .dx

x
 

   
 

Here 
1
22 .x(x) sin

L L
    

 
 in the region 0 < x < L

1 1L 22 2
2 2

2
0

2 x 2 xp sin . .sin .dx
L L L Lx

                        

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L

2

0

2 x xsin . .sin .dx
L L L L

     
 

    
L2 2

2
3

0

x2sin .dx
LL

 
 



    
L2 2

3
0

2 x1 cos .dx
LL

     


    
 

L
2 2

3

0

2 xsin Lx
2L L

  
           



     
2 2 2 2

3 2
LL sin2 sin0
2L L

        

 

2 2
2

2p ..
L


  


Ex. 2. Find the expectation value of position and x-component of
momentum of a particle trapped in a box L wide. Whose
normalized wave function is

1
22 .x(x) sin

L L
     

in the region 0 < x < L  and

(x) 0 for x L  

Solution: : A) The expectation value of a dynamical variable x for normalized wave
function ψ is given by

* ˆx x .dx    ..........(1)

The operator associated with x component of momentum
is x = multiplication by x

x * x. .dx
x


   


     Here  
1
22 .x(x) sin

L L
    

 
 in the region 0 < x < L

1 1L 2 2

0

2 x 2 xx sin x .sin .dx
L L L L

             
     




Unit – 2 61

 
L

2

0

2 xx.sin .dx
L L


 

 
L

0

2 x1 cos2 Lx. .dx
L 2

 
 
 
 



 
L L

0 0

1 1 2 xx.dx x.cos .dx
L L L


  

Now, 
LL 2 2

0 0

x Lx.dx
2 2

 
  
 

  and 
L

0

2 xx.cos .dx 0
L


 

Lx
2

  

B) The expectation value of a dynamical variable px for normalized
wave function ø is given by

*
x xˆp p .dx    ..........(1)

The operator associated with x component of momentum is

xp̂
i x







p * .dx
i x


   




Here 
1
22 .x(x) sin

L L
    

 
 in the region 0 < x < L

1 1L 2 2

0

2 x 2 xp sin . .sin .dx
L L i x L L

                    




  
L

0

2 x xsin .cos .dx
L i L L L

  
 



  
L

2
0

2 xsin .dx
i LL
 

 


  

L

2

0

xcos 2
L

2i L L

 
 

    
 


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   cos2 cos0 0
2iL

    


Ex. 3 A particle limited to the x axis has the wave function   = ax
between x = 0 and x = 1;   = 0 elsewhere. a) Find the
probability that the particle can be found between x = 0.45
and x = 0.55. b) Find the expectation value <x> of the particles
position.

Solution: a) The probability is

0.55x2 0.55 3
2 2 2 2 2

x1 0.45 0.45

xdx a x .dx a 0.0251 a
3

 
     

 
 

b)  The expectation value is
11 1 4 2

2 2 3 2

0 0 0

x ax x. dx a x dx a
4 4

 
       

 
 

Ex.  4. Which of the following are eigen functions of the operator
d
dx

i) e-ax and ii) sin( x)

Solution: i) ax axd e a.e ,
dx

    here function e-ax remains unchanged,

hence e-ax is an eigen function and –a is an eigen value

of the operator 
d
dx .

ii)
d sin( x) .cos( x),
dx

     here functionsin( x)  has changed

after the operation, hence sin( x)  cannot be the  eigen

function of the operator 
d
dx .

Ex. 5. Which of followings are the eigen functions of the operator
2

2
d ?
dx  i) sin x ii) cos x iii) e-2x

Solution: i)
2

2
d sinx sinx,
dx

   Hence, eigen value = –1
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ii)
2

2
d cos x cos x
dx

  Hence, eigen value = –1

iii)
2

x 2x
2

d e 4e ,
dx

   Hence, eigen value = 4

Here all functions remain unchanged; hence all three are

the eigen functions of the operator 
2

2
d .
dx



Ex. 6. The wave function of a particle confined in a box of length

L is 
1

22 .x(x) sin
L L

     
in the region 0 < x < L  and zero

elsewhere. Calculate the probability of finding the particle in
the region 0 < x < L.

Solution: Probability of finding the particle per unit length =  .

Here 
2 .x* sin
L L

      
 

Probability of finding the particle in the length 0 to L/2; we
get

L 1 12 2 2

0

2 x 2 xP sin .sin .dx
L L L L

           
     


  
L

2

0

2 x.sin .dx
L L


 

 
L

0

2 x1 cos2 L. .dx
L 2

 
 
 
 



       

L
2

0

2 xsin1 L. x
2L

L

 
  

 
 

       
1 L (sin sin0) 1.

2L 2 2
L

     
 

 
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Hence, Probability of finding the particle in the length 0 to
L/2 = ½.

Ex. 7. Calculate the energy difference between the ground state and
the first excited state for an electron in one dimensional rigid
box of length 10-10m. (mass of electron = 9.1 × 10–31 kg and
h = 6.626× 10–34 joule-sec)

Solution: The energy of a particle in one dimensional rigid box of side
L is given by

2 2 2 2
2

n 2 2
n hE .n

2mL 8mL
 

   
 


..........(1)

where n = 1, 2, 3,……. Substituting given values

34 2
2 17 2

n 31 10
(6.626 10 )E n 0.603 10 n in joules

8(9.1 10 ) 10




 


   

 

17 2
2

19
0.603 10 .n in eV 37.7n eV

1.6 10






 



In the ground state n = 1, E1= 37.7 eV
For first excited state n = 2, E2 = 37.7 × 4 eV = 150.8 eV
Therefore, the energy difference, E2–E1 = 113.1 eV
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